Belt drive

Function:

This unit consists of a square aluminium profile with an integrated roller guide. The carriage is driven by a timing belt. Each standard pulley includes one coupling claw on one side. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel.

This linear unit is suitable for application in clean rooms of clean-room classification 1.000 (corresponding to US Fed. Standard 209 E).

Fitting position:

As required. Max. length 6.000 mm without joints.

Carriage mounting: By T-slots.

Unit mounting: **Belt performance:** By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

HTD with steel reinforcement, no backlash when changing direction, repeatability ± 0,1 mm.

In the standard version, the carriage runs on 4 rollers which can be adjusted and serviced at a central servicing position. **Carriage support:** For longer carriages the number of rollers can be increased.

Forces and torc	s and torques	Size	60
. o. cos una lore	1003	Forces/Torques	static
		F _× (N)	894
	1	F _v (N)	600
	Fz↑	$F_z(N)$	900
	MZ	M_{x} (Nm)	15
1.		M, (Nm)	60
		M_z (Nm)	40
Mx	Fx Fx	All forces and torq	ues related t
		existing values	<u>Fy</u> • Fz
Fy		table values	Fy _{dyn} Fz _c
// \M	у	No-load torque	
		Nm	0,0
		Speed	
		(m/s) max	4
		Tensile force	
		permanent (N)	90
		0,2 s (N)	100
		Geometrical mome	nts of inertic
		$l_{\rm x}$ mm 4	4,3x
		$l_{_{ m V}}{ m mm}^4$	4,8x
		Elastic modulus N/mm²	700

Size	1 .	60		ВО	100			
Forces/Torques	static	dynamic	static	dynamic	static	dynamic		
F _x (N)	894	800	1900	1800	4000	3800		
F _v (N)	600	500	1600	1240	1900	1500		
$F_z(N)$	900	650	1500	1200	2100	1700		
M _x (Nm)	15	10	50	40	85	60		
M, (Nm)	60	50	100	80	140	110		
M_z (Nm)	40	30	75	60	110	90		
All forces and torc	ues related	to the follo	wing:					
existing values	Fy +	Fz Mx	+ My	+ <u>Mz</u> ≤	,			
table values	Fy _{dyn} F	z _{dyn} Mx _{dy}	m My _{dyn}	Mz _{dyn} ≤	•			
No-load torque								
Nm	(0,6	(),8	1,2			
Speed								
(m/s) max		4		6	7			
Tensile force								
permanent (N)	(900	10	900	4000			
0,2 s (N)	1	000	20	090	4300			
Geometrical mome	ents of iner	ia of alumin	ium profil	е				
l _x mm ⁴	4,3	3×10 ⁵	16,	5×10 ⁵	43,0x10 ⁵			
l mm ⁴	1 / 1 /	Rv1∩5	18	7×1∩⁵	18	8×10 ⁵		

For life-time calculation of rollers use our homepage.

Driving torque:

$$M_{a} = \frac{F * P * S_{i}}{2000 * \pi} + M_{n}$$

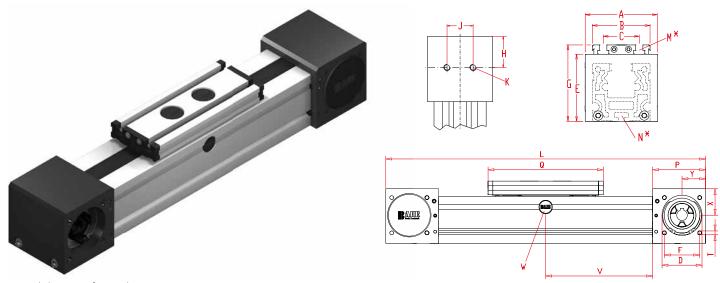
$$P_a = \frac{M_a * n}{9550}$$

= force = pulley action perimeter = safety factor 1,2 ... 2

 $M_n = \text{no-load torque}$ = rpm pulley n M_a = driving torque = motor power

(N) (mm) (Nm)(min-1) (Nm) (KW)

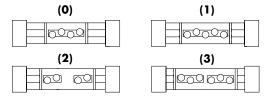
Deflection: E*I*192 f = deflection(mm) F = loadL = free length(mm) E = elastic modulus 70000 (N/mm^2) I = second moment of area (mm^4)



Positioning system QLZ 60, 80, 100

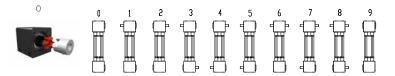
Dimensions (mm)

*For slide nuts refer to chapter 2.2 page 2 V = Q + 100 mm W = servicing position


Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	A	В	C	D -0,05	E	F	G	н	J	к	N for	M for	P	Q	Т	х	Y	Basic weight	Weight per 100 mm
QLZ 60	280	80	60	36	47	63	42	79	29,5	30	M 8	M 5	M 6	59	152	M 6	27	26	3,2 Kg	0,39 kg
QLZ 80	390	100	80	50	68	93	60	106	47,5	40	M 10	M 6	M 8	90	196	M 8	45	40	9,6 Kg	0,86 Kg
QLZ 100	490	130	100	66	90	110	80	129	55	50	M 12	M 10	M 10	110	260	M 10	49	50	15,8 kg	1,23 Kg

O Choice of guide body profile:


- (0) Standard (2) corrosion-protected guide rods and screws
- (4) expanded corrosion-protected version (depending on the availability of components)

O Choice of carriages:

Size	Versi	on 1	Versi	ion 2	Version 3		
	Q	L	Q	L	Q	L	
60	192	320	>232	>360	>232	>360	
80	246	440	>296	>490	>296	>490	
100	320	550	>388	>610	>388	>610	

O Drive version:

Size	Shaft ø hó x length	Key
60	14 x 35	5x5x28
80	18 x 45	6x6x40
100	22 x 45	6x6x40

9 is as 0, but with coupling claws on both sides. The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings or tension sets (size 100).

Belt table / Coupling claw

Code		Size	Belt		Caumlina	
N	lo.	Size	Deit	mm/rev.	Number of teeth	Coupling
0	3	60	5M25	130	26	14
0	4	80	8M30	1 <i>7</i> 6	22	19
0	7	100	8M50	224	28	24

 QLZ
 80
 1
 0
 0
 0
 0
 4
 1
 01500
 — Basic

— Basic length + stroke = total length

For additional accessories refer to chapter 2.2 - 3.2

Sample ordering code:

QLZ80, standard body profile, standard carriage, coupling claw on one side, 1110 mm stroke

